
The Temporal Rover and the ATG Rover
Doron Drusinsky
Time-Rover, Inc.

11425 Charsan Ln., Cupertino, CA 95014, USA
doron@time-rover.com, www.time-rover.com

Abstract. The Temporal Rover is a specification based verification tool for applications
written in C, C++, Java, Verilog and VHDL. The tool combines formal specification, using
Linear-Time Temporal Logic (LTL) and Metric Temporal Logic (MTL), with conventional
simulation/execution based testing. The Temporal Rover is tailored for the verification of
complex protocols and reactive systems where behavior is time dependent. The Temporal
Rover generates executable code from LTL and MTL assertions written as comments in the
source code. This executable source code is compiled and linked as part of the application
under test. During application execution the generated code validates the executing program
against the formal temporal specification requirements. Using MTL, real time and relative time
constraints can be validated. A special code generator support s validation of such constraints in
the field, on an embedded target.

1. Temporal Logic Overview
Temporal Logic [5] is a special branch of modal logic that investigates the notion of
time and order. In [6], Pnueli suggested using Linear-Time Propositional Temporal
Logic (LTL) for reasoning about concurrent programs. Since then, several researchers
have used LTL to state and prove correctness of concurrent programs, protocols, and
hardware (e.g., [2], [3], [4]).

Metric Temporal Logic (MTL) extends Temporal Logic with real time constraints and
was suggested by Chang, Pnueli, and Manna as a vehicle for the verification of real
time systems [1].

Throughout this article we will refer to TL assertions being LTL assertions with or
without MTL extensions.

2. Linear-Time Temporal Logic
Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in
addition to the propositional logic operators (and (&&), or (||), xor (^), not (!), etc.)
there are four future-time operators and four dual past time operators. The following
syntax is used by the Temporal Rover for these four operators:

• Always in the future, and Always in the past. You can use the English
keywords Always and AlwaysInThePast, or a box ([], [-]) to represent the
always operators.

• Sometime in the future, and Sometime in the past. You can use the English
keywords Sometime and SometimeInThePast, or a diamond (<>, <->) to
represent a sometime operators.

• Until (for the future), and Since (for the past). You can use the English
keywords Until and Since, or U and S to represent the until and since
operators.

• Next cycle (for the future), and Previous cycle (for the past). You can use the
English keywords Next and Previous, or a circle ((), (-)) to represent these
operators.

3. Metric Temporal Logic
Metric Temporal Logic (MTL) extends LTL by supporting the specification of
relative time and real time constraints. All four LTL future time operators (Sometime,
Always, Until, Next) can be characterized by relative time and real time constraints
specifying the duration of the temporal operator.

The following are some examples of MTL constraints (text inside curly brackets
implies a prepositional-logic formula):

1. Always<10({readySignal == 1} Implies (){ackSignal == 0})
which reads: always, within the next ten cycles, readySignal == 1 implies that
one cycle later ackSignal == 0.

2. Alwaystimer1[5,10] ({readySignal == 1} Implies
Eventuallytimer2>= 20{ackSignal == 0})
which reads: always, between 5 and 10 timer1 real time units in the future,
readySignal == 1 implies that eventually, at least 20 timer2 real time units
further in the future, ackSignal == 0.

MTL constraints can specify lower bounds, upper bounds, and ranges for relative time
and real time constraints. In the first example a relative time upper bound is specified
for the always operator. It is relative in that the bound is counted in clock cycles (see
The Temporal Rover’s Notion of Time below). In the second example two real time
constraints are specified, using virtual clocks named timer1 and timer2 . A separate
TRClock statement maps these virtual clocks to system calls, system clocks or any
other counting device.

4. Proprietary Operators
The following two operators are Temporal Rover specific and are not part of LTL or
MTL as described in the literature. Both operators can be used only in the MTL form
namely, with a constraint.

• ρ RepeatedUntilconstraint ϕ. This operator counts the number of
occurrences of ρ until the occurrence of ϕ. It is used with MTL syntax, such as
ρ RepeatedUntil<=5 ϕ which succeeds if and only if ρ occurred five times
or less until the occurrence of ϕ. Note that the constraint (written as <=5) does

not represent real-time or relative clock ticks but rather is the number of times ρ
succeeds in a final way (finality issues are discussed in the sequel).

• Repeatedconstraint ρ. This operator counts the number of occurrences of ρ in

the future. It is used with MTL syntax, such as Repeated[4,7] ρ which
succeeds if and only if ρ occurred between four and seven times in the future.

5. Using the Temporal Rover
The Temporal Rover is a code generator whose input is a Java, C, C++, Verilog, or
VHDL source code program, where TL assertions are written as source code
comments. The Temporal Rover parser converts this program file into a new file,
which is identical to the original file except for the TL assertions that are now
implemented in source code.

5.1 Writing Temporal Logic Assertions within a Program

The following example illustrates the way assertions are written inside source code. A
Traffic-Light Controller (TLC) function is repeatedly invoked by a scheduler. Being a
typical state machine, in each invocation cycle it computes its next state based on it's
current state and the values of variables at the time. The TL assertions describes
temporal requirements for this TLC.

void myScheduler() {

while (1) {

 … /* schedule various system modules */

trafficLightController()

}

…

void trafficLightController() {

… /* Traffic Light Controller functionality */

/* TRBegin
// Asserting that always, if light is Green, camera
// is not on (not shooting), namely CameraOn == 0.
TRAssert{ Always({Color_Main == GREEN} Implies

 {CameraOn == 0})
 }

=>
// These actions are customizable and provided by
// the user
 {

printf("Assertion 1: so far: SUCCESS\n");
printf("Assertion 1: so far: FAIL\n");
TRProcessLastResult("Assertion1\n");
printf("Assertion 1: DONE! your last result is FINAL!\n");

 }
TREnd */

} // end of trafficLightController function

The assertion has the following general syntax:

TRAssert {<TL-formula>} => {<Four optional actions>}

The list of four optional actions are, in order:

1. Action to perform every cycle in which the TL formula succeeds.
2. Action to perform every cycle in which the TL formula fails.
3. Action to perform every cycle (see The Temporal Rover’s Notion of Time

below).
4. Action to perform every cycle in which the TL formula succeeds or fails in a

final way (see Finite Executions vs. Infinite TL Sequences below).

5.2 The Temporal Rover’s Notion of Time
In the Traffic Light Controller example above, the assertion is written inside the
trafficLightController function. This location of the assertion within the program
defines the clock tick for the TL assertion. A new cycle for this assertion is
considered to occur when the assertions location in the code is reached in run-time.
For example, an assertion

Always({Color_Main == GREEN} Implies Next {CameraOn == 0})

Within the trafficLightController function will consider the Next cycle to be the next
time trafficLightController is reached.

5.3 Finite Executions vs. Infinite TL Sequences
TL is semantically defined for infinite sequences or at least for sequences whose end
point is known. For example, the TL formula Eventually {x>0} semantically evaluates
to true if there is a point within the input sequence where x>0. However, when
executing an on-going reactive program it is not known a priori whether the program
has ended yet or not. Hence, if x is 0 until cycle 1000 there are two possibilities:

• The program will not continue executing.
• The program will continue executing and possibly x>0 sometime thereafter
.

In the first case Eventually {x>0} should semantically fail, whereas in the second it
might succeed. The Temporal Rover cannot know in run time whether the program

will continue executing or not. Therefore, the best it can conclude is that so far, the
assertion failed. In contrast, when x>0 this assertion succeeds and the Temporal
Rover knows that no future value of x will be able to change this fact. This is the
reason for the fourth optional Temporal Rover action. This action executes when the
success/fail result is final and cannot change in the future.

Another example is Always{x>0}. It will succeed in a non final way as long as x>0. It
will fail in a final way once x is not greater than 0.

5.4 The Embedded Systems Code Generator
Embedded systems applications face the following special constraints:

• Limited memory. The target application in many automotive, consumer, and
communication applications is limited in RAM.

• The target application has real-time constraints.

• Due to the memory size limitations many embedded applications have no on-
board operating system. Such systems have no file system for logging
verification and test reports. In addition, they cannot perform dynamic
memory allocation, which is essential for all TL implementations.

The Temporal-Rover has a special code generator targeted at embedded applications.
The generated verification code has almost no memory overhead on the target, and
performs overhead computation on a host PC. The generated verification code
requires no OS on the target side

Using this code generator, a host computer performs almost all verification code. The
target is required to perform only basic computations of propositional sub-formulae
and to communicate the results to the host.

The host and target code segment communicate via serial port, RPC, or any other
communication protocol, using a customizable protocol. Since all verification code is
executing on host side, there is full access to a file system for logging and comparing
test results.

5.5 Concurrency
The Temporal Rover supports assertions for concurrent systems using the following
approach. Let A and B be two concurrent entities, such as processes, tasks, threads,
modules, etc. Entity A may mark a block of code as a section, such as
CriticalSectionA. Having done that, entity B can refer to this block of code in it's
assertions. For example:

Eventually(
{y==0} And
({x!=0) Until {TRWithin("CriticalSectionA")})

)

Where TRWithin is a special TemporalRover construct that examines, during
execution whether entity A is indeed inside the marked block of code or not.

6. Complexity and Scalability
The Tableau method is commonly used by model-checkers for formal verification of
TL properties. It was conceived as a method for solving the validity problem for LTL
([7]). As such, it is considered as a possible method for run-time evaluation of LTL.
The Tableau method creates a non-deterministic state machine (called the Tableau)
whose size is exponential in the size of the TL formula. For example, the size of the
formula/assertion Always (x==1 Implies Next y==1) is 5, counting 3 operators and 2
propositions. The corresponding Tableau will therefore have 32 states. Being non-
deterministic, a Tableau requires an implementation where most states are in memory
every clock cycle. Obviously, such an exponential method is not scaleable, and cannot
be used for the verification of large applications and protocols. Consider a temporal
logic specification of a real-life protocol such as the PCI-bus protocol, with over 100
assertions, of length 15 each. Consider also an efficient Tableau implementation of 50
bytes per state. The run-time memory requirement will be 160MBytes, leaving almost
no memory for the actual PCI-bus simulation.

Some PCI-bus assertions are listed on our Web site at http://www.time -rover.com,
where it is evident that assertions are often of length 20 or more, requiring 1,000,000
states or more per assertion, implying memory consumption in the order of Gigabytes.
Note that the size of the Tableau is directly related to speed in that it represents the
number of states that need to be evaluated and processed every clock cycle.

The Temporal Rover does not use the Tableau method. The complexity of it's
algorithm is n^2 thereby yielding much better scalability than the Tableau. This
complexity is not in contrast with known exponential lower bounds for the TL
validity problem, as the Temporal Rover does not attempt to solve the validity
problem.

7. The ATG Rover
The ATG-Rover is a program that automatically generates test sequences that cover
high-level specifications written in TL, using the same specification syntax used by
the Temporal Rover.

The sequences generated by the ATG-Rover are well suited for testing a requirement
driven application in that:

• Only sequences relevant to the specification requirements are generated
thereby reducing the size of the test bench considerably.

• The generated sequences have the same flexibility as the high-level
requirements. Hence for example, a requirement that Every two consecutive
Requests must be separated by an Acknowledgement has the flexibility of
allowing the Acknowledgement to appear any time between two consecutive
Requests. Therefore, ATG should generate test sequences that pass for any
combination of <Request, Acknowledgement, Request> triplet, no matter how

far apart the events are from one another. Formally speaking, the ATG Rover
needs to accommodate TL’s inherent non-determinism.

• Redundant test sequences are not generated.

Rather than generating the test bench itself, the output of the ATG-Rover is a program
that generates tests, given in source code. This eliminates the need to store a very
large amount of tests, and enables the test engineer to modify the generated program
so that only a particular subset of tests will be generated. The generated program
becomes the driver of the system under test, for the purpose of testing particular units
within the system. The ATG-Rover accommodates TL’s inherent non-determinism
by incorporating a TemporalRover verification cycle within each ATG-Rover test
cycle.

The generated program generates all possible input sequences for a given maximal
sequence length. For every time stamp within the sequence it generates all possible
input combinations. For each such combination, the generated program does the
following:

1. Feeds the unit under test with it’s current inputs.
2. Fires the unit.
3. Fires the Temporal Rover to validate the unit’s response against the specified

response.

References
1. E. Chang, A. Pnueli, Z. Manna - Compositional Verification of Real-Time
Systems, Proc. 9'th IEEE Symp. On Logic In Computer Science, 1994, pp. 458-465.

2. B. T. Hailpern, S. Owicki - Modular Verification of Communication Protocols.
IEEE Trans of comm. COM-31(1), No. 1, 1983, pp. 56-68.

3. Z. Manna, A. Pnueli - Verification of Concurrent Programs: Temporal Proof
Principles, Proc. of the Workshop on Logics of Programs, Springer Verlag, LNCS,
1981 pp. 200-252.

4. S. Owicki, L. Lamport - Proving Liveness Properties of Concurrent Programs,
TOPLAS 4(3) (1982), 455-495.

5. A. Prior - Past, Present and Future, Oxford University Press, 1967.

6. A. Pnueli - The Temporal Logic of Programs, Proc. 181977 IEEE Symp.. on
Foundations of Computer Science, pp. 46-57.

7. A. P. Sistla, E. M. Clarke - The Complexity of Linear Propositional Temporal
Logic, Journal of the ACM 32 (1985), pp. 733-749.

Appendix: Assertion Examples
• ev1 and ev2 happen or do not happen simultaneously:

Always ({ ev1 } Iff { ev2 })

• if ev1 then ev2 two cycles later:

Always ({ ev1 } Implies (2){ ev2 })

• ev2 not before ev1:

Always (Not{ev2} Until {ev1})

• ev2 within n cycles after ev1:

Always ({ev1} Implies Eventually <=n{ev2})

• ev2 within n1 and n2 cycles after ev1:

Always ({ev1} Implies Eventually [n1,n2] {ev2})

• ev2 any number of cycles after ev1:

Always ({ev1} Implies Eventually {ev2})

• ev2 after n cycles of no ev1:

Always <=nNot{ev1} Implies Eventually >n{ev2}

• ev2 any number of cycles after ev1, with no ev3 in between:

Always ({ev1} Implies ((Not{ev3} Until {ev2}) And

Eventually {ev2}))

• ev1 after the last ev2 and before ev3:

Always (Last{ev2} Implies Eventually ({ev1} And AlwaysInThePast
Not{ev3}))

• if ev1, then ev2 must not occur for n cycles:

 Always ({ev1} Implies Always <=nNot{ev2})

• if ev2, then ev1 must have occurred 3 cycles earlier:

Always ({ev2} Implies Previous Previous Previous {ev1})

• if ev2, then ev1 must have occurred sometime earlier (not including
present time):

Always ({ev2} Implies Previous SometimeInThePast {ev1})

• evMid occured at least once between evStart and evStop:

 Always ({ evStart } Implies {evMid}Before{evStop})

• val==VAL between evStart and evStop:

Always ({ evStart } Implies ({val==VAL} Until {evStop}))

